Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
1.
Prostaglandins Other Lipid Mediat ; 169: 106787, 2023 12.
Article in English | MEDLINE | ID: mdl-37806439

ABSTRACT

Evidence for the biosynthetic pathways of the specialized pro-resolving mediator (SPM) protectin D1 (PD1) and its biochemical further local metabolism were presented during the 8th European Workshop on Lipid Mediators, organized June 29th-July 1st, 2022, in Stockholm, Sweden. Herein, we provide an extended and detailed discussion of these topics. PD1, one of 43 SPMs reported so far, exhibits very potent pro-resolution and anti-inflammatory bioactions. Many research groups worldwide have confirmed these and other interesting bioactions. The protectins constitute, together with the lipoxins, resolvins, and maresins, the four individual SPM families, which have received a great interest in basic biomedical research and drug discovery efforts.


Subject(s)
CD59 Antigens , Lipoxins , Humans , CD59 Antigens/metabolism , Biosynthetic Pathways , Anti-Inflammatory Agents , Eicosanoids/metabolism , Docosahexaenoic Acids/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism
2.
Toxins (Basel) ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37505699

ABSTRACT

CD59 is a GPI-anchored cell surface receptor that serves as a gatekeeper to controlling pore formation. It is the only membrane-bound inhibitor of the complement membrane attack complex (MAC), an immune pore that can damage human cells. While CD59 blocks MAC pores, the receptor is co-opted by bacterial pore-forming proteins to target human cells. Recent structures of CD59 in complexes with binding partners showed dramatic differences in the orientation of its ectodomain relative to the membrane. Here, we show how GPI-anchored CD59 can satisfy this diversity in binding modes. We present a PyLipID analysis of coarse-grain molecular dynamics simulations of a CD59-inhibited MAC to reveal residues of complement proteins (C6:Y285, C6:R407 C6:K412, C7:F224, C8ß:F202, C8ß:K326) that likely interact with lipids. Using modules of the MDAnalysis package to investigate atomistic simulations of GPI-anchored CD59, we discover properties of CD59 that encode the flexibility necessary to bind both complement proteins and bacterial virulence factors.


Subject(s)
Complement Membrane Attack Complex , Complement System Proteins , Humans , Complement Membrane Attack Complex/metabolism , CD59 Antigens/chemistry , CD59 Antigens/metabolism , Bacteria/metabolism
3.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239905

ABSTRACT

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Subject(s)
Complement System Proteins , HIV-1 , Humans , Binding Sites, Antibody , Complement System Proteins/metabolism , CD59 Antigens/metabolism , Complement Membrane Attack Complex/metabolism , Complement Inactivating Agents , HIV-1/physiology
4.
Nat Commun ; 14(1): 890, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797260

ABSTRACT

CD59 is an abundant immuno-regulatory receptor that protects human cells from damage during complement activation. Here we show how the receptor binds complement proteins C8 and C9 at the membrane to prevent insertion and polymerization of membrane attack complex (MAC) pores. We present cryo-electron microscopy structures of two inhibited MAC precursors known as C5b8 and C5b9. We discover that in both complexes, CD59 binds the pore-forming ß-hairpins of C8 to form an intermolecular ß-sheet that prevents membrane perforation. While bound to C8, CD59 deflects the cascading C9 ß-hairpins, rerouting their trajectory into the membrane. Preventing insertion of C9 restricts structural transitions of subsequent monomers and indirectly halts MAC polymerization. We combine our structural data with cellular assays and molecular dynamics simulations to explain how the membrane environment impacts the dual roles of CD59 in controlling pore formation of MAC, and as a target of bacterial virulence factors which hijack CD59 to lyse human cells.


Subject(s)
Complement C9 , Complement Membrane Attack Complex , Humans , Complement Membrane Attack Complex/metabolism , Complement C9/metabolism , Cryoelectron Microscopy , CD59 Antigens/metabolism , Complement C8/metabolism , Complement Activation
5.
Lab Invest ; 103(1): 100028, 2023 01.
Article in English | MEDLINE | ID: mdl-36748190

ABSTRACT

Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel anti-inflammatory and proresolving lipid mediator biosynthesized from docosahexaenoic acid. Excessive activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and consequent pyroptosis are involved in diverse inflammatory diseases. However, how PCTR1 affects NLRP3 inflammasome activation and pyroptosis are still unclear. Here, we demonstrated that PCTR1 inhibited NLRP3 inflammasome activation and pyroptosis. These results show that PCTR1 dose-dependently inhibited gasdermin D cleavage in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin stimulation. Additionally, PCTR1 treatment after LPS priming inhibited caspase-1 activation and subsequent mature interleukin-1ß release independent of the nuclear factor-kappa B pathway. PCTR1 exerted its inhibitory effects by blocking NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC) interaction and ASC oligomerization, thereby restricting NLRP3 inflammasome assembly. However, the inhibitory effect of PCTR1 could be reversed by KH7 and H89, which are the inhibitors of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway. Moreover, PCTR1 treatment alleviated lung tissue damage and improved mouse survival in LPS-induced sepsis. Our study unveils the molecular mechanism of negative regulation of NLRP3 inflammasome activation and pyroptosis by a novel lipid mediator and suggests that PCTR1 may serve as a potential treatment option for NLRP3-inflammasome driven diseases.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , CD59 Antigens/metabolism , CD59 Antigens/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Interleukin-1beta/metabolism , Caspase 1/metabolism
6.
Ann Hematol ; 102(2): 299-309, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36607351

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal disease of hematopoietic stem cells (HSCs). Long noncoding RNAs (lncRNAs) perform a wide range of biological functions, including the regulation of gene expression, cell differentiation, and proliferation, but their role in PNH remains unclear.CD59- and CD59+ granulocytes and monocytes from 35 PNH patients were sorted. High-throughput sequencing was analyzed in 5 PNH patients, and differentially expressed lncRNAs and mRNAs were identified. The mRNAs with fragments per kilobase of exon model per million mapped fragments (FPKM) > 10 in at least 3 patients were selected, and experiments were performed to identify their upstream regulatory lncRNAs. The expression of selected mRNAs and lncRNAs was verified by qRT‒PCR, and the correlation of these expression patterns with clinical data from other 30 PNH patients was analyzed. Then, the functions of the lncRNAs were studied in the PIGA-KO-THP-1 cell line.Transcription analysis revealed 742 upregulated and 1376 downregulated lncRNAs and 3276 upregulated and 213 downregulated mRNAs. After deep screening, 8 highly expressed mRNAs that were related to the NF-κB pathway were analyzed to determine coexpression patterns. LINC01002, FAM157C, CTD-2530H12.2, XLOC-064331 and XLOC-106677 were correlated with the 8 mRNAs. After measuring the expression of these molecules in 30 PNH patients by qRT‒PCR, lncRNA FAM157C was verified to be upregulated in the PNH clone, and its expression levels were positively correlated with the LDH levels and CD59- granulated and monocyte cell ratios. After knockdown of the FAM157C gene in the PIGA-KO-THP-1 cell line, we found that the cells were arrested in the G0/G1 phase and S phase, the apoptosis rate increased, and the cell proliferation decreased.LncRNA FAM157C was proven to promote PNH clone proliferation, and this is the first study to explore the role of lncRNAs in PNH.


Subject(s)
Hemoglobinuria, Paroxysmal , RNA, Long Noncoding , Humans , Hemoglobinuria, Paroxysmal/genetics , Hemoglobinuria, Paroxysmal/diagnosis , RNA, Long Noncoding/genetics , Hematopoietic Stem Cells/metabolism , Clone Cells/chemistry , CD59 Antigens/analysis , CD59 Antigens/metabolism , Cell Proliferation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Theriogenology ; 198: 164-171, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36587540

ABSTRACT

Extracellular vesicles (EVs) are small spherical particles surrounded by a membrane with an unusual lipid composition and a striking cholesterol/phospholipidic ratio. About 2000 lipid and 3500 protein species were identified in EVs secreted by different cell sources. EVs mediate cell to cell communication in proximity to or distant from the cell of origin. In particular, it was suggested that they represent modulators of multiple processes during pregnancy. The aim of this study was to identify the presence of EVs in canine amnion-derived cells (ASCs) culture and the expression of CD 59 on their surface. Amniotic membrane was collected in PBS with antibiotics added from 2 bitches during elective caesarean section. Cells culture was prepared and EVs were isolated. EVs were used to evaluate CD59 expression by flow cytofluorimetry. We found that the majority of EVs expressed CD59. Our results could increase the knowledge about the complex mechanisms that regulate the pregnancy in the bitch.


Subject(s)
Amnion , Extracellular Vesicles , Animals , Dogs , Female , Pregnancy , Amnion/metabolism , Cell Culture Techniques/veterinary , Cesarean Section/veterinary , Extracellular Vesicles/physiology , Lipids , CD59 Antigens/metabolism
8.
Clin Exp Immunol ; 211(1): 57-67, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36571232

ABSTRACT

The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.


Subject(s)
Colonic Neoplasms , MicroRNAs , Humans , Complement Activation , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/metabolism , CD59 Antigens/genetics , CD59 Antigens/metabolism , CD55 Antigens/genetics , Complement System Proteins , Colonic Neoplasms/genetics , MicroRNAs/genetics , Cell Line, Tumor
9.
Article in English | MEDLINE | ID: mdl-36396448

ABSTRACT

BACKGROUND AND OBJECTIVES: Complement regulatory proteins at the neuromuscular junction (NMJ) could offer protection against complement-mediated damage in myasthenia gravis (MG). However, there is limited information on their expression at the human NMJ. Thus, this study aimed at investigating the expression of the cluster of differentiation 59 (CD59) at the NMJ of human muscle specimens and demonstrating the overexpression of CD59 mRNA and protein in the muscles of patients with MG. METHODS: In this observational study, muscle specimens from 16 patients with MG (9 and 7 patients with and without thymoma, respectively) and 6 nonmyopathy control patients were examined. Immunohistochemical stains, Western blot analysis, and quantitative real-time reverse transcription PCR were used to evaluate the CD59 expression. RESULTS: A strong localized expression of CD59 was observed at the NMJ in both patients with and without MG. Moreover, the CD59/glyceraldehyde-3-phosphate dehydrogenase protein ratio in patients with MG was significantly higher than that in the nonmyopathy controls (MG; n = 16, median 0.16, interquartile range (IQR) 0.08-0.26 and nonmyopathy controls; n = 6, median 0.03, IQR 0.02-0.11, p = 0.01). The proportion of CD59 mRNA expression relative to AChR mRNA expression (ΔCtCD59/AChR) was associated with the quantitative MG score, MG activities of daily living score, and MG of Foundation of America Clinical Classification (r = 0.663, p = 0.01; r = 0.638, p = 0.014; and r = 0.715, p = 0.003, respectively). DISCUSSION: CD59, which acts as a complement regulator, may protect the NMJ from complement attack. Our findings could provide a basis for further research that investigates the underlying pathogenesis in MG and the immunomodulating interactions of the muscle cells.


Subject(s)
Myasthenia Gravis, Autoimmune, Experimental , Thymus Neoplasms , Animals , Humans , Myasthenia Gravis, Autoimmune, Experimental/genetics , Myasthenia Gravis, Autoimmune, Experimental/metabolism , CD59 Antigens/genetics , CD59 Antigens/metabolism , Activities of Daily Living , Muscle, Skeletal/metabolism , Complement System Proteins/metabolism , RNA, Messenger/metabolism
10.
Cytometry B Clin Cytom ; 102(6): 487-497, 2022 11.
Article in English | MEDLINE | ID: mdl-36134740

ABSTRACT

BACKGROUND: Flow cytometric immunophenotyping is essential for the diagnosis of paroxysmal nocturnal hemoglobinuria (PNH). Most cases have easy to interpret flow cytometry profiles with red cells, neutrophils and monocytes showing complete deficiency of glycophosphatidylinositol (GPI) linked antigen expression. Some cases are more challenging to interpret due to the presence of multiple populations of PNH cells and variable levels of GPI antigen expression. METHODS: We studied 46 known PNH patients, many with complex immunophenotypic profiles using a novel, single tube, multi-parameter 7-color immunophenotyping assay that allowed simultaneous detection and assessment of PNH clones within multiple lineages of peripheral blood leucocytes. Red cell PNH clones were also assessed in total and immature (CD71+) components by CD59 expression. RESULTS: For individual patients, total PNH clones in each cell lineage were highly correlated. Monocytes, eosinophils and basophils showed the highest proportions of PNH cells. Red cell PNH clones were typically smaller than monocyte and neutrophil PNH clones. In most cases, PNH clones were detectable in minor leucocyte populations where multiple populations of PNH cells were present, variability in the proportions of type II and type III cells was seen across different cell lineages, even though total PNH clones remained similar. CONCLUSIONS: This study shows that PNH patients with multiple PNH clones do not always display the same abnormality across all cell lineages routinely tested. There is no simple explanation for this but is likely due to a combination of complex molecular, genetic and biochemical dysfunction in different blood cell types.


Subject(s)
Hemoglobinuria, Paroxysmal , Humans , Immunophenotyping , Cell Lineage , Flow Cytometry , CD59 Antigens/metabolism , Clone Cells
11.
Proc Natl Acad Sci U S A ; 119(24): e2120083119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35666870

ABSTRACT

Human pancreatic islets highly express CD59, which is a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein and is required for insulin secretion. How cell-surface CD59 could interact with intracellular exocytotic machinery has so far not been described. We now demonstrate the existence of CD59 splice variants in human pancreatic islets, which have unique C-terminal domains replacing the GPI-anchoring signal sequence. These isoforms are found in the cytosol of ß-cells, interact with SNARE proteins VAMP2 and SNAP25, colocalize with insulin granules, and rescue insulin secretion in CD59-knockout (KO) cells. We therefore named these isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2). Antibodies raised against each isoform revealed that expression of both IRIS-1 and IRIS-2 is significantly lower in islets isolated from human type 2 diabetes (T2D) patients, as compared to healthy controls. Further, glucotoxicity induced in primary, healthy human islets led to a significant decrease of IRIS-1 expression, suggesting that hyperglycemia (raised glucose levels) and subsequent decreased IRIS-1 expression may contribute to relative insulin deficiency in T2D patients. Similar isoforms were also identified in the mouse CD59B gene, and targeted CRISPR/Cas9-mediated knockout showed that these intracellular isoforms, but not canonical CD59B, are involved in insulin secretion from mouse ß-cells. Mouse IRIS-2 is also down-regulated in diabetic db/db mouse islets. These findings establish the endogenous existence of previously undescribed non­GPI-anchored intracellular isoforms of human CD59 and mouse CD59B, which are required for normal insulin secretion.


Subject(s)
Alternative Splicing , Diabetes Mellitus , CD59 Antigens/genetics , CD59 Antigens/metabolism , Diabetes Mellitus/genetics , Humans , Insulin Secretion , Protein Isoforms/genetics , Protein Isoforms/metabolism
12.
Sci Rep ; 12(1): 8652, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606403

ABSTRACT

Cancer immunoediting drives the adaptation of tumor cells to host immune surveillance. Previously, we have demonstrated that immunoediting driven by cytotoxic T lymphocytes (CTLs) enriches NANOG+ tumor cells with immune-refractory properties. Here, we found that CTL-mediated immune pressure triggered cross-resistance of tumor cells to the complement system, a part of the innate immune system. In this process, NANOG upregulated the membrane-bound complement regulatory protein (mCRP) CD59 through promoter occupancy, thereby contributing to the resistance of tumor cells against complement-dependent cytotoxicity (CDC). Notably, targeting of NANOG sensitized the immune-refractory tumor cells to trastuzumab-mediated CDC. Collectively, our results revealed a possible mechanism through which selection imposed by T-cell based immunotherapy triggered complement-resistant phenotypes in the tumor microenvironment (TME), by establishing a firm molecular link between NANOG and CD59 in immune-edited tumor cells. We believe these results hold important implications for the clinical application of CDC-mediated therapeutic antibody.


Subject(s)
CD59 Antigens , Neoplasms , Apoptosis , CD59 Antigens/genetics , CD59 Antigens/metabolism , Complement System Proteins , Humans , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Neoplasms/genetics , Trastuzumab , Tumor Microenvironment
13.
Microbiol Spectr ; 10(1): e0218621, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196804

ABSTRACT

Pore-forming toxins (PFTs) are commonly produced by pathogenic bacteria, and understanding them is key to the development of virulence-targeted therapies. Streptococcus agalactiae, or group B Streptococcus (GBS), produces several factors that enhance its pathogenicity, including the PFT ß-hemolysin/cytolysin (ßhc). Little is understood about the cellular factors involved in ßhc pore formation. We conducted a whole-genome CRISPR-Cas9 forward genetic screen to identify host genes that might contribute to ßhc pore formation and cell death. While the screen identified the established receptor, CD59, in control experiments using the toxin intermedilysin (ILY), no clear candidate genes were identified that were required for ßhc-mediated lethality. Of the top targets from the screen, two genes involved in membrane remodeling and repair represented candidates that might modulate the kinetics of ßhc-induced cell death. Upon attempted validation of the results using monoclonal cell lines with targeted disruption of these genes, no effect on ßhc-mediated cell lysis was observed. The CRISPR-Cas9 screen results are consistent with the hypothesis that ßhc does not require a single nonessential host factor to mediate target cell death. IMPORTANCE CRISPR-Cas9 forward genetic screens have been used to identify host cell targets required by bacterial toxins. They have been used successfully to both verify known targets and elucidate novel host factors required by toxins. Here, we show that this approach fails to identify host factors required for cell death due to ßhc, a toxin required for GBS virulence. These data suggest that ßhc may not require a host cell receptor for toxin function or may require a host receptor that is an essential gene and would not be identified using this screening strategy.


Subject(s)
Hemolysin Proteins/toxicity , Perforin/toxicity , Streptococcal Infections/genetics , Streptococcal Infections/physiopathology , Streptococcus agalactiae/metabolism , CD59 Antigens/genetics , CD59 Antigens/metabolism , CRISPR-Cas Systems , Cell Death , Cell Line , Genome, Bacterial , Hemolysin Proteins/metabolism , Host-Pathogen Interactions , Humans , Perforin/metabolism , Streptococcal Infections/metabolism , Streptococcal Infections/microbiology , Streptococcus agalactiae/genetics
14.
Cells ; 10(8)2021 08 20.
Article in English | MEDLINE | ID: mdl-34440921

ABSTRACT

Transplantation of xenogenic porcine chondrocytes could represent a future strategy for the treatment of human articular cartilage defects. Major obstacles are humoral and cellular rejection processes triggered by xenogenic epitopes like α-1,3-Gal and Neu5Gc. Besides knockout (KO) of genes responsible for the biosynthesis of respective epitopes (GGTA1 and CMAH), transgenic expression of human complement inhibitors and anti-apoptotic as well as anti-inflammatory factors (CD46, CD55, CD59, TNFAIP3 and HMOX1) could synergistically prevent hyperacute xenograft rejection. Therefore, chondrocytes from different strains of single- or multi-genetically modified pigs were characterized concerning their protection from xenogeneic complement activation. Articular chondrocytes were isolated from the knee joints of WT, GalTKO, GalT/CMAH-KO, human CD59/CD55//CD46/TNFAIP3/HMOX1-transgenic (TG), GalTKO/TG and GalT/CMAHKO/TG pigs. The tissue-specific effectiveness of the genetic modifications was tested on gene, protein and epitope expression level or by functional assays. After exposure to 20% and 40% normal human serum (NHS), deposition of C3b/iC3b/C3c and formation of the terminal complement complex (TCC, C5b-9) was quantified by specific cell ELISAs, and generation of the anaphylatoxin C5a by ELISA. Chondrocyte lysis was analyzed by Trypan Blue Exclusion Assay. In all respective KO variants, the absence of α -1,3-Gal and Neu5Gc epitope was verified by FACS analysis. In chondrocytes derived from TG animals, expression of CD55 and CD59 could be confirmed on gene and protein level, TNFAIP3 on gene expression level as well as by functional assays and CD46 only on gene expression level whereas transgenic HMOX1 expression was not evident. Complement activation in the presence of NHS indicated mainly effective although incomplete protection against C3b/iC3b/C3c deposition, C5a-generation and C5b-9 formation being lowest in single GalTKO. Chondrocyte viability under exposure to NHS was significantly improved even by single GalTKO and completely preserved by all other variants including TG chondrocytes without KO of xenoepitopes.


Subject(s)
Bone Diseases/therapy , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Transplantation, Heterologous/methods , Animals , Animals, Genetically Modified , Bone Diseases/genetics , CD55 Antigens/genetics , CD55 Antigens/metabolism , CD59 Antigens/genetics , CD59 Antigens/metabolism , Cartilage, Articular/pathology , Cells, Cultured , Chondrocytes/cytology , Complement System Proteins/genetics , Complement System Proteins/metabolism , Gene Expression , Gene Knockout Techniques , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/metabolism , Swine , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
15.
Nat Immunol ; 22(6): 757-768, 2021 06.
Article in English | MEDLINE | ID: mdl-34031614

ABSTRACT

Maturation of B cells within germinal centers (GCs) generates diversified B cell pools and high-affinity B cell antigen receptors (BCRs) for pathogen clearance. Increased receptor affinity is achieved by iterative cycles of T cell-dependent, affinity-based B cell positive selection and clonal expansion by mechanisms hitherto incompletely understood. Here we found that, as part of a physiologic program, GC B cells repressed expression of decay-accelerating factor (DAF/CD55) and other complement C3 convertase regulators via BCL6, but increased the expression of C5b-9 inhibitor CD59. These changes permitted C3 cleavage on GC B cell surfaces without the formation of membrane attack complex and activated C3a- and C5a-receptor signals required for positive selection. Genetic disruption of this pathway in antigen-activated B cells by conditional transgenic DAF overexpression or deletion of C3a and C5a receptors limited the activation of mechanistic target of rapamycin (mTOR) in response to BCR-CD40 signaling, causing premature GC collapse and impaired affinity maturation. These results reveal that coordinated shifts in complement regulation within the GC provide crucial signals underlying GC B cell positive selection.


Subject(s)
B-Lymphocytes/immunology , Complement Activation , Complement C3a/metabolism , Complement C5a/metabolism , Germinal Center/immunology , Animals , Animals, Genetically Modified , B-Lymphocytes/metabolism , CD55 Antigens/genetics , CD55 Antigens/metabolism , CD59 Antigens/metabolism , Cell Line, Tumor , Clonal Hematopoiesis/immunology , Germinal Center/cytology , Germinal Center/metabolism , Humans , Lymphocyte Activation , Mice , Palatine Tonsil/cytology , Palatine Tonsil/pathology , Proto-Oncogene Proteins c-bcl-6/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Complement/genetics , Receptors, Complement/metabolism , Signal Transduction/immunology , TOR Serine-Threonine Kinases/metabolism
16.
FEBS Lett ; 595(11): 1542-1558, 2021 06.
Article in English | MEDLINE | ID: mdl-33838053

ABSTRACT

Over 100 glycosylphosphatidylinositol-anchored proteins (GPI-APs) are encoded in the mammalian genome. It is not well understood how these proteins are targeted and translocated to the endoplasmic reticulum (ER). Here, we reveal that many GPI-APs, such as CD59, CD55, and CD109, utilize human SND2 (hSND2)-dependent ER targeting machinery. We also found that signal recognition particle receptors seem to cooperate with hSND2 to target GPI-APs to the ER. Both the N-terminal signal sequence and C-terminal GPI attachment signal of GPI-APs contribute to ER targeting via the hSND2-dependent pathway. Particularly, the hydrophobicity of the C-terminal GPI attachment signal acts as the determinant of hSND2 dependency. Our results explain the route and mechanism of the ER targeting of GPI-APs in mammalian cells.


Subject(s)
CD55 Antigens/metabolism , CD59 Antigens/metabolism , Endoplasmic Reticulum/metabolism , Glycosylphosphatidylinositols/metabolism , Membrane Proteins/genetics , SEC Translocation Channels/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Arsenite Transporting ATPases/genetics , Arsenite Transporting ATPases/metabolism , CD55 Antigens/genetics , CD59 Antigens/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , Glycosylphosphatidylinositols/chemistry , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Binding , Protein Domains , Protein Sorting Signals , Protein Transport , SEC Translocation Channels/genetics
17.
Cell Mol Life Sci ; 78(7): 3637-3656, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33555391

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


Subject(s)
CD59 Antigens/metabolism , Cell Membrane/metabolism , Host-Pathogen Interactions , Lung/microbiology , Membrane Proteins/metabolism , Pseudomonas aeruginosa/isolation & purification , Trihexosylceramides/metabolism , Biological Transport , CD59 Antigens/genetics , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Lung/metabolism , Lung/pathology , Membrane Proteins/genetics , Pseudomonas aeruginosa/physiology , Signal Transduction
18.
PLoS Genet ; 17(2): e1009387, 2021 02.
Article in English | MEDLINE | ID: mdl-33577603

ABSTRACT

Cholesterol-dependent cytolysins (CDCs), of which intermedilysin (ILY) is an archetypal member, are a group of pore-forming toxins secreted by a large variety of pathogenic bacteria. These toxins, secreted as soluble monomers, oligomerize upon interaction with cholesterol in the target membrane and transect it as pores of diameters of up to 100 to 300 Å. These pores disrupt cell membranes and result in cell lysis. The immune receptor CD59 is a well-established cellular factor required for intermedilysin pore formation. In this study, we applied genome-wide CRISPR-Cas9 knock-out screening to reveal additional cellular co-factors essential for ILY-mediated cell lysis. We discovered a plethora of genes previously not associated with ILY, many of which are important for membrane constitution. We show that heparan sulfates facilitate ILY activity, which can be inhibited by heparin. Furthermore, we identified hits in both protein and lipid glycosylation pathways and show a role for glucosylceramide, demonstrating that membrane organization is important for ILY activity. We also cross-validated identified genes with vaginolysin and pneumolysin and found that pneumolysin's cytolytic activity strongly depends on the asymmetric distribution of membrane phospholipids. This study shows that membrane-targeting toxins combined with genetic screening can identify genes involved in biological membrane composition and metabolism.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Cytotoxins/metabolism , Heparitin Sulfate/metabolism , Bacterial Proteins/genetics , Bacteriocins/genetics , CD59 Antigens/metabolism , CRISPR-Cas Systems , Cell Line, Tumor , Cytotoxins/genetics , HEK293 Cells , Humans , Porosity
19.
Immunol Invest ; 50(5): 478-491, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32611246

ABSTRACT

CD55 and CD59 are complement regulatory proteins suggested to be related with progression of diabetes and its complications. The stromal cell-derived factor 1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR-4) are chemokine proteins. We aimed to investigate the relation of CD55 and CD59 expression levels and polymorphisms of SDF-1 and CXCR-4 with type 2 diabetes mellitus (T2DM) and its complications. Seventy-five T2DM patients and 73 controls were enrolled. Expression levels of CD55 and CD59 were measured by FACS Calibur; qRT-PCR was used to determine SDF-1 and CXCR-4 gene polymorphisms. CD55 and CD59 expressions in patients with nephropathy, retinopathy and cardiovascular disease were significantly lower than controls. Frequency of CXCR-4 T allele carrying was high in patients and created 1.6 fold risk for the disease (p = .07). CXCR-4 a allele carriers had decreased nephropathy; although there was no statistical significance in carrying CXCR-4 T allele, presence of nephropathy was approximately 2 times higher (p = .254). The nephropathy risk increased 10-fold in CXCR-4 TT genotype carriers (p = .02). All SDF-1 CC genotype carriers had retinopathy, so, it was considered that the CC genotype was effective in retinopathy development (p = .031). For the presence of cardiovascular disease, significant difference was observed for SDF-1 genotypes. Increased cardiovascular risk of 5- and 1.9-fold in SDF-1 T (p = .007) and CXCR-4 T (p = .216) allele carriers, respectively, was observed. We suggest that CD55 and CD59 protein levels and SDF-1 and CXCR-4 have predictive importance in process, complications and tendency of T2DM.


Subject(s)
CD55 Antigens/metabolism , CD59 Antigens/metabolism , Cardiovascular Diseases/genetics , Chemokine CXCL12/genetics , Diabetes Mellitus, Type 2/immunology , Genotype , Receptors, CXCR4/genetics , Aged , CD55 Antigens/genetics , CD59 Antigens/genetics , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymorphism, Genetic
20.
Mol Biol Cell ; 32(3): 226-236, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33326251

ABSTRACT

Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell-cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.


Subject(s)
Endocytosis/physiology , Myosin Type II/metabolism , rho-Associated Kinases/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Adherens Junctions/physiology , CD59 Antigens/metabolism , Caco-2 Cells , Cadherins/metabolism , Clathrin/metabolism , Cytoskeletal Proteins/physiology , Cytoskeleton/metabolism , Epithelial Cells/cytology , HeLa Cells , Histocompatibility Antigens Class I/metabolism , Humans , Myosin Type II/physiology , Nonmuscle Myosin Type IIA/metabolism , Nonmuscle Myosin Type IIB/metabolism , Protein Isoforms/metabolism , rho-Associated Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...